Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Ther Adv Respir Dis ; 16: 17534666221122544, 2022.
Article in English | MEDLINE | ID: covidwho-2021056

ABSTRACT

BACKGROUND: Information about angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), and Ang-(1-7) levels in patients with COVID-19 is scarce. OBJECTIVE: To characterize the Ang II-ACE2-Ang-(1-7) axis in patients with SARS-CoV-2 infection to understand its role in pathogenesis and prognosis. METHODS: Patients greater than 18 years diagnosed with COVID-19, based on clinical findings and positive RT-PCR test, who required hospitalization and treatment were included. We compared Ang II, aldosterone, Ang-(1-7), and Ang-(1-9) concentrations and ACE2 concentration and activity between COVID-19 patients and historic controls. We compared baseline demographics, laboratory results (enzyme, peptide, and inflammatory marker levels), and outcome (patients who survived versus those who died). RESULTS: Serum from 74 patients [age: 58 (48-67.2) years; 68% men] with moderate (20%) or severe (80%) COVID-19 were analyzed. During 13 (10-21) days of hospitalization, 25 patients died from COVID-19 and 49 patients survived. Compared with controls, Ang II concentration was higher and Ang-(1-7) concentration was lower, despite significantly higher ACE2 activity in patients. Ang II concentration was higher and Ang-(1-7) concentration was lower in patients who died. The Ang II/Ang-(1-7) ratio was significantly higher in patients who died. In multivariate analysis, Ang II/Ang-(1-7) ratio greater than 3.45 (OR = 5.87) and lymphocyte count ⩽0.65 × 103/µl (OR = 8.43) were independent predictors of mortality from COVID-19. CONCLUSION: In patients with severe SARS-CoV-2 infection, imbalance in the Ang II-ACE2-Ang-(1-7) axis may reflect deleterious effects of Ang II and may indicate a worse outcome.


Subject(s)
Angiotensin II , Angiotensin I , Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin I/blood , Angiotensin I/chemistry , Angiotensin II/blood , Angiotensin II/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/diagnosis , COVID-19/mortality , Female , Humans , Male , Middle Aged , Peptide Fragments , Peptidyl-Dipeptidase A , Prognosis , SARS-CoV-2
2.
Hypertension ; 79(2): 365-378, 2022 02.
Article in English | MEDLINE | ID: covidwho-1541968

ABSTRACT

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System/physiology , SARS-CoV-2 , ADAM17 Protein/blood , Aged , COVID-19/mortality , COVID-19/therapy , Enzyme Activation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Respiration, Artificial , Risk , Treatment Outcome
3.
Front Immunol ; 12: 625732, 2021.
Article in English | MEDLINE | ID: covidwho-1291351

ABSTRACT

The etiological agent of COVID-19 SARS-CoV-2, is primarily a pulmonary-tropic coronavirus. Infection of alveolar pneumocytes by SARS-CoV-2 requires virus binding to the angiotensin I converting enzyme 2 (ACE2) monocarboxypeptidase. ACE2, present on the surface of many cell types, is known to be a regulator of blood pressure homeostasis through its ability to catalyze the proteolysis of Angiotensin II (Ang II) into Angiotensin-(1-7) [Ang-(1-7)]. We therefore hypothesized that SARS-CoV-2 could trigger variations of ACE2 expression and Ang II plasma concentration in SARS-CoV-2-infected patients. We report here, that circulating blood cells from COVID-19 patients express less ACE2 mRNA than cells from healthy volunteers. At the level of circulating cells, this ACE2 gene dysregulation mainly affects the monocytes, which also show a lower expression of membrane ACE2 protein. Moreover, soluble ACE2 (sACE2) plasma concentrations are lower in prolonged viral shedders than in healthy controls, while the concentration of sACE2 returns to normal levels in short viral shedders. In the plasma of prolonged viral shedders, we also found higher concentrations of Ang II and angiotensin I (Ang I). On the other hand, the plasma levels of Ang-(1-7) remains almost stable in prolonged viral shedders but seems insufficient to prevent the adverse effects of Ang II accumulation. Altogether, these data evidence that the SARS-CoV-2 may affect the expression of blood pressure regulators with possible harmful consequences on COVID-19 outcome.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Adult , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Female , Gene Expression Profiling , HLA-DR Antigens , Humans , Lipopolysaccharide Receptors , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Pilot Projects , Prospective Studies , RNA, Messenger , Virus Shedding
4.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L213-L218, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1234311

ABSTRACT

The renin-angiotensin system (RAS) is fundamental to COVID-19 pathobiology, due to the interaction between the SARS-CoV-2 virus and the angiotensin-converting enzyme 2 (ACE2) coreceptor for cellular entry. The prevailing hypothesis is that SARS-CoV-2-ACE2 interactions lead to an imbalance of the RAS, favoring proinflammatory angiotensin II (ANG II)-related signaling at the expense of the anti-inflammatory ANG-(1-7)-mediated alternative pathway. Indeed, multiple clinical trials targeting this pathway in COVID-19 are underway. Therefore, precise measurement of circulating RAS components is critical to understand the interplay of the RAS on COVID-19 outcomes. Multiple challenges exist in measuring the RAS in COVID-19, including improper patient controls, ex vivo degradation and low concentrations of angiotensins, and unvalidated laboratory assays. Here, we conducted a prospective pilot study to enroll 33 patients with moderate and severe COVID-19 and physiologically matched COVID-19-negative controls to quantify the circulating RAS. Our enrollment strategy led to physiological matching of COVID-19-negative and COVID-19-positive moderate hypoxic respiratory failure cohorts, in contrast to the severe COVID-19 cohort, which had increased severity of illness, prolonged intensive care unit (ICU) stay, and increased mortality. Circulating ANG II and ANG-(1-7) levels were measured in the low picomolar (pM) range. We found no significant differences in circulating RAS peptides or peptidases between these three cohorts. The combined moderate and severe COVID-19-positive cohorts demonstrated a mild reduction in ACE activity compared with COVID-19-negative controls (2.2 ± 0.9 × 105 vs. 2.9 ± 0.8 × 105 RFU/mL, P = 0.03). These methods may be useful in designing larger studies to physiologically match patients and quantify the RAS in COVID-19 RAS augmenting clinical trials.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System , Respiratory Insufficiency/blood , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Pilot Projects , Respiratory Insufficiency/pathology , Respiratory Insufficiency/physiopathology
6.
Eur J Endocrinol ; 184(4): 543-552, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1067456

ABSTRACT

OBJECTIVE: While evidence on the interface between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the renin-angiotensin-aldosterone-system (RAAS) is accumulating, clinical data on RAAS peptide alteration among coronavirus disease-19 (COVID-19) patients is missing. DESIGN AND METHODS: In this exploratory study, we prospectively included adult patients (aged ≥ 18 years) admitted between February 26 and April 30, 2020 to a tertiary care hospital in Switzerland. We assessed the association of an underlying SARS-CoV-2 infection and equilibrium serum levels of RAAS peptides in hospitalized COVID-19 patients 1:1 propensity-score matched with patients suffering from SARS-CoV-2-negative respiratory infections. Subgroup analyses involved stratification for taking RAAS inhibitors. RESULTS: COVID-19 patients had about 50% lower equilibrium serum RAAS peptide levels as compared with matched controls (angiotensin I: 31.6 vs 66.8 pmol/L, -52.7% (95%CI: -68.5% to -36.9%); angiotensin II: 37.7 vs 92.5 pmol/L, -59.2% (95%CI: -72.1% to -46.3%); angiotensin (1-5): 3.3 vs 6.6 pmol/L, -49.7% (95%CI: -59.2% to -40.2%); angiotensin (1-7): 4.8 vs 7.6 pmol/L, -64.9% (95%CI: -84.5% to -45.3%)). While the plasma renin activity was lower in COVID-19 patients (88.6 vs 207.9 pmol/L, -58.5% (95%CI: -71.4% to -45.6%)), there was no difference of angiotensin-converting enzyme (ACE) and ACE2 plasma activity between the groups. Subgroup analyses revealed a pronounced RAAS peptide profile depression in COVID-19 patients among those not on RAAS inhibitors. CONCLUSIONS: As compared with SARS-CoV-2-negative patients, we found a downregulated RAAS in presence of a SARS-CoV-2 infection. Whether the lower levels of the protective angiotensin (1-5) and (1-7) are linked to adverse outcomes in COVID-19 warrants further investigation.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Peptidyl-Dipeptidase A/blood , Renin/blood , Adrenergic beta-Antagonists/therapeutic use , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Renin-Angiotensin System , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL